Euclidian or non-euclidian geometry?
Euclidian geometry is a geometry familiar to us: only one line can go through two points, the straight line is the shortest path, etc. But there are other geometries which are non-euclidian. One example is the geometry over a sphere. In this case, an infinity of lines can go through two points and the straight line is not the shortest path.
Henri Poincaré asks the question if our experience can prove that the euclidian geometry is true, the non-euclidian ones wrong. The surprising answer is that actually our experience is unable to make the difference and in this sense, no geometry is more true than another. In his own words:
"Il est donc impossible d'imaginer une expérience concrète qui puisse être interprétée dans le système euclidien et qui ne puisse pas l'être dans le système lobatchevskien [on a sphere], de sorte que je puis conclure:Interesting to know that there is not an absolute in geometry as well.
Aucune expérience ne sera jamais en contradiction avec le postulatum d'Euclide; en revanche aucune expérience ne sera jamais en contradiction avec le postulatum de Lobatchevsky."
No comments:
Post a Comment